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STRESS FIELDS OF DISLOCATION CONFIGURATIONS IN AN ISOTROPIC PLATE"

G. V. BUSHUEVA, A. A. PREDVODITELEV, R. D. FROLOVA and S. M. KHZARDZHIAN

A method of determining the stress fields caused by plane dislocation configurations
in a plate, is given. Stress fields of dislocation formations with arbitrary Burgers'
vectors lying in an arbitrary plane parallel to the plate surface are determined.

The problem is solved using a generalization of the method given in /1,2/, and the
solution is given in analytic form as well as in a form suitable for numerical
computations.

The necessity for the analysis of the elastic stress fields of various dislocation forma-
tions in plates arises in connection with extensive practical application of thin films. The
problem was studied earlier only for particular cases of infinite rectilinear screw /3/ and
edge /4/ dislocations, and of the circular dislocation loops lying in the middle of the plate

/1,27,

1. Formulation of the problem. Let a dislocation loop of arbitrary shape with
arbitrary Burgers' vector b be situated in a plane parallel to the surface of a plate of
thickness d. We assume that the plane in which the loop lies is separated from the upper
and the lower surface of the plate by the distance #h, and hy , respectively. The presence
of a dislocation loop implies that a displacement jump

vSu(r):§(bL+b“)6(r—r’)dS (1.1)

exists on the plane § bounded by the line of dislocation. Here b, and b, denote the compon-
ents of the Burgers' vector of the dislocation loop perpendicular to, and lying in the plane
of the loop, and r'is a variable of integration.

We introduce two Cartesian coordinate systems, the basic (z,y,2 system and the auxilliary
(¢, m,3) system. The zy-plane of the basic system coincides with the plane of the loop.
The origin of the auxilliary system is shifted in the iy -plane by a distance denoted by
the vector r'. The ¢ -axis is directed along the unit vector k which forms some angle 8
with the =z -axis.

Using, as the §-function, its integral representation /5/, we shall write (1.1) in the

form o
1 2
du(r) = g S SS b1 +bP b, ) cos k (r — r)) dk 4§ (1.2)

5 —x

Here b, and b,® are the components of the Burgers' vector b, parallel and perpendicular,
respectively, to the vector k, Ik|=VF F w1 and m are the projections of the vector k on
the - and ¥ -axis respectively. From (1.2) we see that if we know the state of stress
o.** generated by the Fourier components 5u55”w Su;, qorresponding to the three components
of the Burgers' vector in (1.2)

éug = Q, 6“71 = Su, = 0 6111] = Q, 6“75 = Ou. = 0; du, — Q, fmg = 5u,n = U0; Q= cos(k{r — ")) = cos kE (1.3)
then the stress due to the dislocation loop can be written in integral form
b, w0
G ), = 7 S SS sF (kK (r — ) dk S (1.4
5 is
‘ byoper ~ "
G M) =P m--sPo, P 775 SS AMZEO (¢ — pydk dS. n=1.2, M = cos(Kby), A - sin (Kb ) (1.5)
s Ix
5;'1.::1ia(1k33:;“ (1.6)

Here «;; denote the matrix defining the passage from the (E, m, z) coordinate system attached
to the vector k, to the basic (z,y5,z) system. The integrand expressions under the integral
over § are integral representations of the Green's function for the stresses caused by the
plane dislocation configuration in the plate. The stresses caused by the dislocation loop
with an arbitrary Burgers' vector are found by summing the expressions (1.4) and (1.5).
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Thus the solution of the problem is reduced to finding a stress field in a plate with
free surfaces defined by the normal n, provided that the following conditions hold on the

surface P — (1.7)
where <o is the dislocation locp stress tenscor.

The above particular problems were solved separately for the upper and lower part of the
plate. Matching the solutions obtained was carried out by assuming that a displacement jump
of the type (l.3) should exist in the plane of the loop z- 0. The displacements must corres-
pond to the Fourier compcnents and the stress tensor components must be centinuous in  the
plane ;=a0,

The first type of displacements (l.3) corresponds to the case of plane deformations.
Using the boundary conditions (1.7) and the matching conditions corresponding to this type of
displacements, we cbtain the solutich of the problem with the help of Airy functiens in the
form

4 e *
agtE — F vt sin kG, o5 = i, cos kS (1.8)
e S N T

G&i = — it eosk, ot = vt 4 allt, ot — ol =0

Y= 6k — s T ks Y g, = 0,12
F = M @ eh ({2 [) b h Gk | ]
o= — Wy [(By— A4 (klz| — C [ 2) -V Co(B, — A -
Elz Dy /D)4 K|z 4, (B — v Ay)
Vo= (1 =By Ay — (k2] — 0,1 2)+ (B —vdy) X
B+ 4, —kijz[C,/2)— 4, [vB, + (1 — 2v) 4,]
G- L= kje| A7 2 [ (By—wvAN (k2|0 /2 -B) 4 4y X
(8, - (1 — 2v) 4y)
P, = (1 vy MG (B - ks D /2 4 k2| (By — ARl —
(G 2) [vBy + (1 — 29 Ao] - k| 5| Ay (By — vAR)]
P = (1 — ) [2 U?s —Ag) - WGy (k2] A — D) | (By —vdy) X
(By 424, - V2 k|a|C) — 4, vB;— 1 — 2v) 4,]
e (M =k 2| (By ~ Ag) — Wa O (&) — 24, - k2| D, [ 2 +
Kla| Ay By —vAy — 5 O (2~ v) By - A, '
Ay - shhp, 4y = sh? ke, By -« k%, By = k¢
Cy — sh2kp 4 2kp, €, - sh 2kg 4 2ky
D, == sh2kp — 2kp, D, - sh 2k 2kg
Mo 20 By (1 — 2 4) + G (B -+ (1 — 2v) 4]
pt o= kg gt oo hy pT o hy o ky

¥

Here ¢ is the shear modulus and v is the Poisson's ratio. The quantities with the plus and
minus signs refer to the regions z3 0 and ¢+« N, respectively.

The second type of displacements (1.3) alsc represent a case of plane deformation. It
has the associated stress field

ngft‘” - 20T cos 5, ol ED = 3 pF sin kg L.
NEL(D) e + . RHL(1) g TE(L -+ (1)

”g;i b= mp g T sink T v (o 4 o=y

“:\2") _ 0:;(1) 0, got gnik, 5 ps, gty n=10,1,2

go NIB,chk]z]) -t Vash{k]zl

My = —v) A (A, — By E|z]|Dy/ 23 + (B, —vA) (4, — D, —
k|z|D,/!2)

Wo= (4 — WDy (k2] €/ 2 —By) - k| 2| (B, — 4,)] 4
Elz| A {By — vag) — Yo By [v 8, £ (1 —2v) 4,]

O = — v, —A)k|z] 1 D/ VD, (B — A kX
lz] i 1 klz| Ay (B ~vAY

Vo= — (0 =Dy (b Ay | 0 2) - — A (By - Al =
(By — YA (B, 4 k|z| D! 2)

D= (1 — WD, (B, A, —k z|C 2 — i, A (k|z]"
Dy i) 4 (By-- vA) (D - klz]A)

Wy — (0 — v I A (g~ 8y VoD 06— kiz] 4]
By —vd) (B, — 24, + Kk |z| D /D

N =2[D; By - (1 —2v) Ag) - Dy (5 - (1 — 2v) 41!

The stress field corresponding to the third type of displacements (1.3) produces anti-
plane deformation. In this case the eguation of equilibrium assumes the form of a Laplace
eguation, the solution of which has the form

og:.:(z) = TV, Ghay (B, 8, pE, ¢F) o kE (1.10)

. e L2 109 K
o;;im m — VoGkyy (K, 2, T, qF) con KE, 0%'3) — am]\o’ At n;‘ta) o
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g3 = o [ch(k|z|) — th(kp)sh (k]|z]]
ga= o [ch (k[ z]) th (kp) — sh (k| z ]I
@ = 2 th (kp) / [th (kp) -+ th (kg)]

The knowledge of the stress fields (1.8)— (1.10) associated with the Fourier components of
the displacements (1.3) enables us to determine, using the formulas (1.4), (1.5) and (1.6},
the stress field in a plate for arbitrary dislocations with arbitrary Burgers' vector.Making

kR, or h, tend to infinity, we can also determine the stress fields for the dislocation of
arbitrary form, with Burgers' vectors, in a semi-infinite medium.

2. Stress field of the circular disloaction loops in a plate. Let us consid-
er a solution of the problem for a particular case of a circular dislocation loop of radius
e , with an arbitrary Burgers' vector b. Let (r,y,2 and (r, @,z be the Cartesian and
cylindrical coordinate systems with origins at the center of the loop. In this case n =k cos9,
m=ksin®, r=(r,a), r = (r,a). Integrating (1.2) with respect to ds, we obtain
o
fu= S Sbcos (kr sin 8) J, (ka) dk d9

2n
00

(2.1)

Here J, is a Bessel function of the first order. Let us first consider the peripheral dis-
location loop. In this case the determination of oy is reduced, in accordance with (2.1),
to computing the integral

Sik S Jy(ma) s}, dm db

ab, OF (2.2)
&)

Computing the integral (2.2) with (1.6) and (1.8) taken into account, we obtain the following
expression for the components of the elastic stress field of the peripheral loop in the plate:

Oxt = F B Fot cos «, erizif.’\LF‘,t sin @ (2.3)
Ot = — B (VAT sin?a 4 Fp [1 — (1 — v) sin? a] -+ Fg*r-! cos 2a)

Op= = — B, {vFiEcosta 4+ F,E [1 — (1 — v) cos? a] — Fy¥rt cos 2a)

ot = — B {—avEE + U (1 — V) FE + Fytr) sin 2a

ot = — B, By, B = Gba(l — vyl

FE= S kT (ka) Jy (k1) fo (R, 2, pE, ¢%) dke
[

FE= S Ty (ka) Jy (hr) f; (ko 2, pE, gDy dk, i=1,2
0

o
FE= S Ty (ka) J 1 (kr) fa Ry 2, pE, gF) di
[1]

fo£ = v 11 (k, 2, pE, @) — (1 — V) f1 (K, 2, pT, ¢%)

Figures 1 and 2 depict the character of variation in the shear stresses o, in units of
Gb, /(1—wv)a at the points in the zz -plane for v =034, for the cases 2h = k= 0.8a and
hy= hy=a, respectively.
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Fig. 3

Figure 3 shows, for comparison, analogous curves for a peripheral loop in an infinite medium.
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Curves I1—5 correspond to the values (1 —v)ao,, /b =05,0.1,0.05, 0.02 and 0.005. The solid, dash-
ed and dot-dash lines denote, respectively, the positive, negative and zero levels of the
shear strength. We see that the displacement of the dislocation loop from the central plane
may lead to additional emergence of the lines o¢g=0 onto the surface. This means that in
the case of a nonsymmetrical distribution of the dislocation loops within the plate, the
stresses in the layers near the surface may vary not only in magnitude, but alsc in sign, i.e.
the character of the stress distribution may change. The latter fact can exert a significant
influence on the physical processes developing in thin films.

For a slipping, circular dislocation loop in the expression {1.5) assumes the form

o 271
ab
= ok S S Jy (kay [sHV sin (@ - 8) + S5 cos (@ -+ 6)] dk dB
e Q

Here ou;""Y are connected with oy ™" by the relations (1.6), and o,™® are determined by
the expressions (1.9) and (1.10)., Performing the integration, we obtain

0% = F B OF cos o (2.4)
ot = F By feosa PlvdE + (1 +3v @/ 4 — (1 —v) D/ 4] — Y, Bt cos 3 a}
Ot = B feosa [(vI4) DFE 4 34+ v DFE b~ Y, (1 —v) DyE] 1 3, Dyt cos 3a)

Gyt =B (sina [— Vo v@F + Y (1~ v) @ + Vo (1 — %) BT ]+, OF sin 3 o

0oF = — By (eos 2o (U BF — 1 OE) 1, 0% £ 15 (1 — v) @F)
apt = — By sin2a (, 0F — 2 ), By==0bal(1—w
o
Df = S Ky (ka) Ty (kr) g (ke 2, pEo gt dk, i=1,23
id

o0
OF = § 6r () Jo (k) g s 2 0%, gB) Ak, = 45
;

OF = (k70 (k0 7o (k) [vgs— (4 — ¥) (g — ga)] 2k
L]

= {71 (ka) 7y () g5 (K, 2, p%, gF) ak
0
s = go (o2, pE, g®) — (1 — V) g (ks 5, pF, 0B 72

3. Stress field of the rectilinear dislocations and of other plane dislocation configura-
tions in a plate. Relations (2,3) and {2.4) offer the means of determining the stress fields
of rectilinear dislocations parallel to the plate surface. To do this, it is sufficient to
shift the coordinate system from the center of the loop to the line of dislocation and carry
out the passage to the limit, as a— o0, in the resulting expressions. For an edge dislocation
parallel to the =z-axis the slip plane of which is perpendicular to the plate surface, we

obtain -
(3.1
= ’iS (k, z, pT, qi)cos kydk
0

o5 =61 S otk = pE, g%y sin by i, o = 85 § 110k 5, 0%, o) sin by dk
0 o

Ot = (va:t + 0, ), 0= Oy = O ﬁ,l_' =Gby fat —w)

For the edge dislocation oriented along the z-axis, with the slip plane parallel to the plate
surface, we have
i (1,—-‘\7) . (3.2)
cfz = (-31; Ssin ky [gs, (k, 2, p¥, ¢ty + 5 & (k. 2, P~ ?i)} dk
i1

sE= 51 g1k, 2, &, g%) cos ky dk

°./-;B

sk =% ﬂ‘ g2k, 2, pE, qF) cos ky dk
&

Ot = v (0T + 0, 0nF = 0T =0 Byt =6y in(l—v)

For a screw dislocation parallel to the r-—axis the results are
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vai = F Gby ()T [ Ty, 0p = Gb It 2Ty / Ty (3.3)

oyt =0, t = ok = ot =
+ = S +
xy . x 2 i
T,=ch~—gy—sm i cosid————-—}—Tsin?—nj}—

* .. pE
Ty= (ch~:;—y—cos~1‘a§-) (chldy—+cos n_(q__ag_—{—_i)

" + *
L x x —z
Tg=sh db sin qd sin i?——-)—

Combining (3.1), (3.2) and (3.3) we can find the stress field of the rectilinear dislocations
with arbitrary Burgers' vectors, and the stress fields of any dislocation configurations made
of rectilinear dislocations, namely the dislocation dipoles, walls, grids of varying struct-
ure, etc., in a plate.
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