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STRESS FIELDS OF DISLOCATION CONFIGURATIONS IN AN ISOTROPIC PLATE* 

G. V. BUSHUEVA, A. A. PREDVODITELEV, R. D. FROLOVA and S. M. KHZARDZHIAN 

A method of determining the stress fields caused by plane dislocation configurations 

in a plate, is given. Stress fields of dislocation formations with arbitraryBurgers' 

vectors lying in an arbitrary plane parallel to the plate surface are determined. 

The problem is solved using a generalization of the method given in /1,2/, and the 

solution is given in analytic form as well as in a form suitable for numerical 

computations. 

The necessity for the analysis of the elastic stress fields of various dislocation forma- 

tions in plates arises in connection with extensive practical application of thin films. The 

problem was studied earlier only for particular cases of infinite rectilinear screw /3/ and 

edge /4/ dislocations, and of the circular dislocation loops lying in the middle of the plate 

/1,2/. 

1. Formulation of the problem. Let a dislocation loop of arbitrary shape with 

arbitrary Burgers' vector b be situated in a plane parallel to the surface of a plate of 

thickness d. We assume that the plane in which the loop lies is separated from the upper 

and the lower surface of the plate by the distance h, and hp, respectively. The presence 
of a dislocation loop implies that a displacement jump 

6u (r) = (bi + b ,,)a (I - r')dS (1.1) 

exists on the plane s bounded by the line of dislocation. Here b, and b,, denote the compon- 

ents of the Burgers' vector of the dislocation loop perpendicular to, and lying in the plane 

of the loop, and r'is a variable of integration. 
We introduce two Cartesian coordinate systems, the basic (z.Y.2) system and the auxilliary 

(5, q, z) system. The sY-plane of the basic system coincides with the plane of the loop. 

The origin of the auxilliary system is shifted in the XY -plane by a distance denoted by 

the vector r'. The 5 -axis is directed along the unit vector k which forms some angle R 

with the z-axis. 

Using, as the e-function, its integral representation /5/, we shall write (1.1) in the 

form 
1 rr 

Au(r) = 4nZ sss 
(b(,f) + b';' + bl)e"s (k (1. - 1.')) dk d.Y 

(1.2) 
5 -n 

Here b,,(l) and b ,,@’ are the components of the Burgers' 

respectively, to the vector k, Ik 1 = 1/L: + ~1; 
vector b,,parallel and perpendicular, 

1 and mare the projections of the vector k on 

the Z- and Y-axis respectively. From (1.2) we see that if we know the state cf stress 

%P ** generated by the Fourier components Fug,&,,, &I,, qorresponding to the three components 
of the Burgers' vector in (1.2) 

6ug = Q, 6uq ~~ 6~: = (I; 6rrq ~ Q, dr,< = 81,. : 0; 6u, 7 Q, h; = 6u 
v 

7 0; Q m= ('05 (k (1. - 1.')) = cos x-s (1.3) 

then the stress due to the dislocation loop can be written in inteqral form 

(1.4) 

-* ~~ 
dih- ~ u&..‘g (1.6) 

Here ai,, denote the matrix defining the passage from the (~,q,~) coordinate system attached 
to the vector k, to the basic (I, !,, 2) system. The integrand expressions under the integral 
over S are integral representations of the Green's function for the stresses caused by the 

plane dislocation configuration in the plate. The stresses caused by the dislocation loop 
with an arbitrary Burgers' vector are found by summing the expressions (1.4) and (1.5). 
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Thus the solution of the problem is reduced to finding a stress field in a plate with 

free surfaces defined by the normal II, provided that the following conditions hold on the 

surface 
("1 1, = 0 (1.7) 

where {u> is the dislocation loop stress tenser. 

The above particular problems were solved separately for the upper and lower part of the 

plate. Matching the solutions obtained was carried out by assuming that a displacement jump 

of the type (1.3) should exist in the plane of the loop Z- O. The displacements must corres- 

pnd to the Fourier components and the stress tensor components must be continuous in the 

plane g=a, 
The first type of displacements (1.3) corresponds to the case of plane deformations. 

Using the boundary conditions (1.7) and the matching conditions corresponding to this type of 
displacements, we obtain the solution of the problem with the help of Air-y functions in the 
form 

The stress field corresponding to the third type of displacements (1.3) produces anti- 

plane deformation. In this case the equation of equilibrium assumes the form of a Laplace 

equation, the solution crf which has the form 

(J*'+(z) -7 4 "a (;.Lqj (k, z, pf, q') S II Irs (1.10) 
h 
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g, = w [ch (k 12 1) - th (b) sh (k I 2 I)1 

g, = w lch (k 1 z I) th (W - sh (k I 2 I)1 
o = 2 th (kp)/ [th (kp) + th (kq)) 

The knowledge of the stress fields (1.8)- (1.10) associated with the Fourier components of 
the displacements (1.3) enables us to determine, using the formulas (1.4), (1.5) and (l-6), 
the stress field in a plate for arbitrary dislocations with arbitrary Burgers' vector.Making 

h, or h, tend to infinity, we can also determine the stress fields for the dislocation of 
arbitrary form, with Burgers' vectors, in a semi-infinite medium. 

2. Stress field of the circular disloaction loops in a plate. Let US consid- 
er a solution of the problem for a particular case of a circular dislocation loop of radius 
a , with an arbitrary Burgers' vector b. Let (2, Y. 2) and (r,a,z) be the Cartesian and 

cylindrical coordinate systems with origins at the center of the loop. In this case n= k eos8, 

m = k sin 8, r = (r, CL). r’ = (r’, a’). Integrating (1.2) with respect to as, we obtain 

2n m 

6”=+ss b cos (kr sin fJ) J, (ka) dk dl3 

0 0 

(2.1) 

Here J, is a Bessel function of the first order. Let us first consider the peripheral dis- 
location loop. In this case the determination of oik is reduced, in accordance with (2.1), 
to computing the integral 

(2.2) 

Computing the integral (2.2) with (1.6) and (1.8) taken into account, we obtain the following 
expression for the components of the elastic stress field of the peripheral loop in the plate: 

uxz* = i bIF,* cos CL, uVz+ = T pLFO* sin a (2.3) 

exx* = - PI (vF,* sin* a + P, * [1 - (1 - v) sill? a] + F,'r-'ox Za) 

uW* = - fil {VP,* cos* a + F,* 11 - (1 - v)c& a] - Fsf,-l ros 2a) 

uzy* = - PI (- 1/z YF1* + Vz(l - v) F,* + F,*r') sin 2a 

o,z* = - PI F,*, PI = Gbia (1 - v)-’ 

F$=j kJ, (kn) J, (kr) fa (k, 2, P*, q*) dk 

0 
m 

Ff = 1 kJ, (ka) J1 (kr) fi (k, z, p*, q*) dk, i = l-2 

P,‘I = 
5 

JI (ka) J, (kr) fa (k, z, p*, q*) dk 
0 

fs* = y h (k, 2, P*, q’) - (1 - v) fn (k, 2, P*, q’) 

Figures 1 and 2 depict the character of variation in the shear stresses %xr in units of 
Gbl/(l-v)n at the points in the 52 -plane for Y = 0.34, for the cases 2 h,= h,=lJAa and 
h, = h, = a , respectively. 

Fig.2 

Figure 3 shows, for comparison, analogous curves for a peripheral loop in an infinite medium. 
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Curves I-5 correspond to the values (1 - v)~o~,/ Gb, = 0.5,0.1,0.05, 0.02 and 0.005. The solid, dash- 
ed end dot-dash lines denote, respectively, the positive, negative and zero levels of the 
shear strength. We see that the displacement of the dislocation loop from the central plane 
may lead to additional emergence of the lines n,, r= 0 onto the surface. This means that in 
the case of a nonsymmetrical distribution of the dislocation loops within the plate, the 
stresses in the layers near the surface may vary not only in magnitude, but also in sign, i.e. 
the character of the stress distribution may change. The latter fact can exert a significant 
influence on the physical processes developing in thin films. 

For a slipping, circular dislocation loop in the expression (1.5) assumes the form 

nb 1/ 
CT 27 

. 
Cik = yx 

SI 
J1 (ka) [CT?) sin (a + 0) + CT?) cos (a -1 911 dk d6 

00 

Here ..,*(i) are connected with ~ig**(~) by the relations (1.61, and qk**(o are determined by 
the expkssions (1.9) and (1.10). Performing the integration, we obtain 

crz,* = 5 6,,0,* cm cl. (2.4) 

Q!* = ‘F B], {cm a pi, wb,* + (1 + 3 v)lQ :4-~il--)a)s*/4f- '/*fD,fcos3cr) 

%* = r 8,, @OS CL [iv 14) @If + (3 + v) @f ! 4- 'I,(i - Y) @,*I + ‘id CD,+ 03s 3a) 

(Fan* = T fi,, {sin a [- V4 v$* + V4 (1 - v) Qp,* i_ Vg (1 - Y) cD,* 1 + Ii4 CD,* sin 3 u] 

",,f = - @,{ (cas 2cz (112 a$* - ?-I @,*) + I/* $* + 'i*(l - Y) +f: 

riuz* = - @ ,, sin 2 a (V, cD,* - r-l U+*), fl ,, = Gb ,! (1 / (i - v) 

cDf= kJ,(ko)J,(kr)gi(k,z,iv~.rl*)dk, i=1,2,3 
i 
” 

8, :-= go (k, 2, p*, q*i - (1 - v) br (k, 8, p*, sf) / 2 

3. Stress field of the rectilinear dislocations and of other plane dislocation configura- 
tions in a plate. Relations (2.3) and (2.4) offer the means of determining the stress fields 
of rectilinear dislocations parallel to the plate surface. To do this, it is sufficient to 
shift the coordinate system from the center of the loop to the line of dislocation and carry 
out the passage to the limit, as II-~, in the resulting expressions. For an edge dislocation 
parallel to the z-axis the slip plane of which is perpendicular to the plate surface, we 
obtain 

a:,=TB:510(k,Z,pf,91t)Coskydk 
(3.1) 

0 

uzz* = v (uuu* + uzl*), ux. = oxra, = 0, B,* = Gb,_ / n (1 - v) 

For the edge dislocation oriented along the s-axis, with the slip plane parallel to the plate 
surface, we have 

(XI 

o,‘i = 6: 
(1-v) 

g, (k, I, pi, q*) + 2 g, (k .% P*. q*) 1 dk 
0 

e = F s: 1 g1( k, I, $3 g*) cos ky dk 

i 

uxx* = v (uyyt f uzz*), u,,f = r+y* = 0, p,,’ = Gb,\ /x(1 -v) 

For a screw dislocation parallel to the s-axis the results are 

(3.2) 
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a%“* ,= q= Gb,! 

uyz* = (I,,* = 

I,= ch? yin 

( 

nY 
T,= chd- 

(2d)-'T, / Tp, u,$ = Gb,, (2 d)"T, / T, 

&_ =1 urn* = I-J 

f 
+4X 

sr(pf-zr i 2+ 
d-j-~ sin 7 

nz 
cm - d 

~67f--Pff~) 
d > 
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(3.3) 

Combining (3.11, (3.2) and (3.3) we can find the stress field of the rectilinear dislocations 
configurations made 
of varying struct- 

with arbitrary Burgers' vectors, and the stress fiel.ds of any dislocation 
of rectilinear dislocations, namely the dislocation dipoles, walls, grids 

ure, etc., in a plate. 
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